
We reveal how to get the most out of Firefox, IE,
Opera and Safari. Plus speed sites up in Chrome

MASTER
BROWSER
DEV TOOLS

 issue 246 october 2013 www.netmagazine.com

is
su

e
24

6
65 PAGES OF PRACTICAL WEB DESIGN TIPS AND TECHNIQUES!

 Create
slick CSS
layouts
Build amazing user interfaces
with the revolutionary Flexbox

> Develop
with Grunt
Give your workflow a makeover

> Marketing
analytics tips
How to measure social activity & more

s M
ASTER D

EV
E

LO
PERS s THE G

U
IL

D
 O

F

6 .net october 2013

develop discover design

contributors
We’ve scoured the web to find
the best writers, designers and
net gurus. From authors and
activists to user experience
specialists, we’ve got ’em all

Future Publishing, 30 Monmouth Street, Bath BA1 2BW
Telephone +44 (0)1225 442244 Website www.netmagazine.com

Lauri
Hynynen
Lauri (@laurihy) is a
developer at Backlift.
Read his tutorial on
page 100 on building
a form by using
Backlift to create a
Facebook application

just by editing some files in Dropbox.

 http://backlift.com

Stephen Hay
Stephen
(@stephenhay) is
a frontend design
and development
consultant. Read his
tutorial on page 74
about the new CSS
spec, The Flexible

Box Layout Module, aka Flexbox.

 www.the-haystack.com

Addy
Osmani
Addy
(@addyosmani)
works on the
Chrome team at
Google. Turn to
page 46 for how
to use Chrome

DevTools to speed up your site.
 http://addyosmani.com

Editorial

 Editor Oliver Lindberg, oliver.lindberg@futurenet.com

 Deputy editor Martin Cooper, martin.cooper@futurenet.com

 Production editor Jenny Williams, jenny.williams@futurenet.com

 Digital editor Tanya Combrinck, tanya.combrinck@futurenet.com

 Art editor Mike Brennan, mike.brennan@futurenet.com

Contributors
Matt Aebersold, Aral Balkan, Romain Bourdieux, Ross Bruniges, Ruth Burr, Mike
Buzzard, Kevin Charlton, Brad Colbow, Ryan Crawford, Anna Dahlström, Ian Devlin,
Tom Dougherty, Ryan Downie, Ben Dyer, Frank Fenten, Jack Franklin, Adam Gatenby,
Matt Gifford, Craig Grannell, Susan Hallam, Stephen Hay, Whitney Hess, Lauri Hynynen,
Jim Kalbach, Laura Kalbag, Mark Kirby, A.J. Kohn, Mustafa Kurtuldu, Karen Lewis, Elliot
Lings, Michael Litman, Jenn Lukas, Damon Mangos, Gary Marshall, Bryson Meunier,
Lorna Mitchell, Katie Moffat, Jordan Moore, Nick Moules, Luke Murphy-Wearmouth,
James Oconnell, Dennis Odell, Addy Osmani, Thomas Pomarelle, Jared Ponchot,
Robert Reinhard, Harry Roberts, Alex Russell, Luke Scanlon, Fadi Shuman, Chris Skelton,
Jonathan Smiley, Andi Smith, Graham Smith, Brian Suda, John Taylor, Jim Thacker, Alex
Turner, Alistair Tweedie, Rob Walker, Trent Walton, Sam Williams, Paul Wyatt

Photography Kristinn Magnússon
Group Art Director Steve Gotobed
Creative Director Robin Abbott
Editorial Director Jim Douglas

Advertising
Advertising Director Charlie Said, 020 7042 4142, charlie.said@futurenet.com
Account Manager Julian Tozer, 020 7042 4273, julian.tozer@futurenet.com
Account Manager Ross Arthurs, 020 7042 4128, ross.arthurs@futurenet.com
Account Manager Laura Watson, 020 7042 4122, laura.watson@futurenet.com
London Sales Director James Ranson, 020 7042 4163, james.ranson@futurenet.com

Marketing
Group Marketing Manager Philippa Newman, philippa.newman@futurenet.com

Circulation
Trade Marketing Director Daniel Foley, daniel.foley@futurenet.com

Print & Production
Production Coordinator Roberta Lealand, roberta.lealand@futurenet.com

Licensing
Licensing & Syndication Director Regina Erak, regina.erak@futurenet.com
Tel + 44 (0)1225 732359

Future Publishing Limited
Editor in chief Dan Oliver, dan.oliver@futurenet.com
Head of creative and design Declan Gough, declan.gough@futurenet.com
Managing director Nial Ferguson, nial.ferguson@futurenet.com
Chief Executive Officer (UK) Mark Wood, mark.wood@futurenet.com

Subscriptions
Phone our UK hotline 0844 848 2852; international (+44) (0) 1604 251045
Subscribe to .net magazine online at www.myfavouritemagazines.co.uk

NEXT ISSUE ON SALE: 8 October 2013

Printed in the UK by Philtone Litho Ltd.
Distributed in the UK by Seymour Distribution Ltd,
2 East Poultry Avenue, London EC1A 9PT. Tel: 0207 429 4000

© Future Publishing Limited 2013. All rights reserved. No part of this magazine may be used
or reproduced without the written permission of the publisher. Future Publishing Limited
(company number 2008885) is registered in England and Wales. The registered office of
Future Publishing Limited is at Beauford Court, 30 Monmouth Street, Bath BA1 2BW. All
information contained in this magazine is for information only and is, as far as we are aware,
correct at the time of going to press. Future cannot accept any responsibility for errors or
inaccuracies in such information. Readers are advised to contact manufacturers and retailers
directly with regard to the price of products/services referred to in this magazine. If you
submit unsolicited material to us, you automatically grant Future a licence to publish your
submission in whole or in part in all editions of the magazine, including licensed editions
worldwide and in any physical or digital format throughout the world. Any material you
submit is sent at your risk and, although every care is taken, neither Future nor its
employees, agents or subcontractors shall be liable for loss or damage.

Dennis Odell
Dennis (@denodell) is
head of web development
at ideas and innovation
company AKQA. Turn to
page 94 where he shows
you how to simplify day-to-
day frontend development
tasks and streamline your

workflow by automating repetitive tasks
with Grunt, the JavaScript task runner.

 www.akqa.com

Andi Smith
Andi (@AndiSmith) is a presentation
technical architect at ideas and
innovation agency AKQA. He
provides valid frontend solutions
for large-scale digital solutions and
also works with the latest HTML5
and JavaScript APIs. He’s worked
alongside clients such as Heineken,

Nike, Unilever and MINI. Turn to page 34 for his
secrets for optimising your development workflow
using browser tools.
 www.andismith.com

Jared Ponchot
Jared (@jponch)
is design director
at interactive
strategy, design and
development company
Lullabot. Turn to page
80 for his tutorial on
using the Foundation

framework to translate a sketch to a
responsive HTML prototype.

 www.lullabot.com

We are committed to only using
magazine paper which is derived
from well managed, certified
forestry and chlorine-free
manufacture. Future Publishing
and its paper suppliers have been
independently certified in
accordance with the rules of the
FSC (Forest Stewardship Council).

The ABC combined print, digital
and digital publications circulation
for Jan–Dec 2012 is

16,309

Print 12,703
Digital 3,606

A member of the Audited Bureau of Circulations

s M
ASTER D

EV
E

LO
PERS s THE G

U
IL

D
 O

F

MASTER
BROWSER
DEV TOOLS

.net browser_dev_tools

34 .net october 2013

 .net october 2013 35 next>

.net browser_dev_tools

Once upon a time, debugging a web
page involved inserting copious
amounts of alerts into our JavaScript,

hitting refresh, and then hammering every
alert box OK button until we found the
information we wanted. Thankfully, over the
years, debugging a website has got easier,
with the main browsers making specialist,
built-in tools available to developers.

Browser developer tools allow us to inspect,
edit, debug, log and profile our HTML, CSS and
JavaScript, and include an exhaustive range of
features and functionality to aid us in these
tasks. You can improve your development
workflow by getting to know how these tools
work in every browser. Below are 20 tips, split
into three categories (beginner, intermediate
and advanced) to help you get started.

For beginners
01 Log multiple console values

in different formats
If we use string concatenation in our logs
when debugging objects and arrays, the
console will return the string value of an
object. Instead, log multiple values from
console.log by supplying multiple arguments:

 console.log('Object output: ' + myObject);
 // returns Object output: [object Object]
 console.log('Object output:', myObject);
 // returns Object output: Object {key: "value",
 key2: "value"}

As well as the standard log, there are other
types of logging available, which can help you

Words Andi Smith is a
presentation technical
architect at ideas and
innovation agency
AKQA. He provides valid
frontend solutions for
large-scale digital
solutions and also works
with the latest HTML5
and JavaScript APIs. He’s
worked alongside clients
such as Heineken, Nike,
Unilever and MINI
 www.andismith.com

Image Mike Brennan
is art editor of .net
www.twitter.com/mike_
brennan01

to distinguish between the different types of
console information:

 console.log('Captain\'s Log 1', new Date());
 console.info('Ammo supplies moderate');
 console.debug('Shield\'s are up');
 console.warn('Unidentified craft approaching');
 console.error('Fire in the cargo bay');

You can preserve logs between pages in
Chrome and Opera 15 by right-clicking on the
console output and selecting Preserve Log Upon
Navigation. In Internet Explorer (IE), this option is
available in the Tools menu bar, under Clear
Entries On Navigate.

In Firebug (http://getfirebug.com), the Persist
option above the console will keep the console
history. Currently, Firefox preserves console logs
by default. In a future version, this option will be
in the Settings menu.

02 Use the console in any panel
You can run an instance of the console from

any of the other panels in Chrome, IE11, Opera 15
and Safari.In Chrome and Opera 15, press the Esc
key. In IE11, the keyboard shortcut is Ctrl + '. Safari
has a small console prompt available below the
main panel by default.

Combining the console alongside tabs such as
the DOM Inspector and Scripts panel can provide
a very powerful way to inspect what’s happening
within your DOM and scripts.

03 View your site as responsive
There are various options available

for testing responsive pages in the

Inside every browser are tools to aid developers. Andi Smith shares
his tricks and secrets for optimising your development workflow

<prev 36 .net october 2013

.net browser_dev_tools

browser in addition to the traditional
method of simply resizing the browser.

In Chrome, Firefox, Opera 15 and Safari 6.1,
docking the tools to the right enables users to
achieve finer control over resizing their content,
while also facilitating full use of the tools.

In Chrome and Opera 15, the option to dock
to right is found to the bottom left of the tools:
clicking and holding the Dock button will enable

you to select between three docking options. In
Firefox, the Dock To Right button is in the top-left
of the toolbar, next to the Close button; in Safari
6.1, it’s located in the top right-hand corner and is
only available once you’ve undocked the tools.

Chrome, Firefox, IE11 and Opera 15 also
include dedicated responsive modes, which can
be used to set the browser window to a defined
width and height. This has the advantage of
displaying how much content will be shown in
the default viewport area.

In Chrome and Opera 15 developer tools, open
the Settings menu (the cog found in the bottom
right) and select the Overrides tab. In this tab is

Responsive mode Chrome, Firefox, IE11 and Opera 15 all offer dedicated responsive modes

Console tip Get to know the different types of logging Use the console anywhere Open a console in any panel

Browser developer tools provide a powerful
platform for examining our web pages.
Here’s a quick rundown of how to do so:

Accessing the browser dev tools
Each browser provides a menu shortcut for
accessing the developer tools, plus keyboard
shortcuts. In most browsers, you can access
the developer tools by pressing F12 or Ctrl,
Shift and I on Windows and Linux or Cmd,
Opt and I on Mac.

In all browsers (except IE) you can also
open the tools by right clicking on the page
and selecting Inspect Element. The tools will
automatically highlight the element you have
selected on the page. In Safari, enable the
developer tools first. Do this by checking the
option in Preferences > Advanced > Show
Develop Menu in menu bar.

Base functionality
All browsers have similar base functionality:

O��Console: displays logs, warning and errors;
a JavaScript console writes scripts to
interact with our page.

O� Elements/Inspector/HTML: shows the
browser’s interpretation of the HTML code
of current pages. Nodes and attributes on
the pages can then be easily manipulated
directly from this DOM inspector for real-
time editing.

O��Styles: lists all styles from our stylesheet
applied to the element currently selected.
Also contains a ‘computed’ view showing
all the styles the browser is applying to our
element, and a box model view of the
element showing margin, border, padding,
width and height. The CSS Styles panel also
allows for real-time editing.

O��Script/Sources/Debugger: a script tab for
viewing and debugging JavaScript running
on our page. We can set breakpoints in
our code and step through line by line to
check it is functioning as expected.

O��Profiler: this captures and analyses
JavaScript performance.

O��Network: a traffic timeline for viewing
resources loaded on to the page. These
are listed with HTTP status, file size,
header information and response times.

Using the browser dev tools

an option called Device metrics that allows us to
specify our own width and height. Alternatively,
if you tick the User Agent option and select a
device, it will automatically fill in the correct
dimensions. You can then untick the User Agent
option if you don’t require it. In Firefox, the
Responsive Design Mode is the top-right icon in
the menu. Choosing this option presents a smaller
viewport with a drop-down to choose different

device dimensions. In IE11, this mode can be
found in the Emulation tab.

04 View available CSS properties
In Chrome, IE11, Opera 15 and Safari, you

can view the available CSS properties on an
attribute by pressing Ctrl and Space when the CSS
attribute field is blank.

05 Reference DOM elements from
the console

While working in the console, we may need to
reference an element from the DOM. There are
various shortcuts to select elements quickly.

 There are various options available for
 testing responsive pages in the browser,
 in addition to simply resizing it

 .net october 2013 37 next>

.net browser_dev_tools

We can retrieve a single element by using $.
For example, if our element had an ID of
magazine, we would type $('#magazine'). If it
had a class of latest, we would type $('.latest');.

Here, $ is shorthand for document.
querySelector. Therefore, it only returns the first
match rather than an array of matches as in
JavaScript libraries such as jQuery. If the $ variable
is already in use, then this functionality is
overridden by the library using it.

In some older browser developer tools and in
IE11, $ will retrieve an ID, while $$ is used to
retrieve a class. In these cases, the hash or dot
are not required. For example:

 $('magazine');
 $$('latest');

Tools that have the newer functionality will
warn you if you use the old syntax.

06 Reference the current
or previously selected

DOM element
If you have an element currently selected in
your DOM, you can use the reference $0 to call
it within your code. For example, to see the
current element’s inner HTML, you would type
the following: $0.innerHTML.

In Chrome, Firebug 1.12, IE11, Opera and
Safari, you can retrieve elements you have
previously highlighted by using $1 - $4. In
Firebug, you can use $n(2) - $n(5).

07 Set conditional breakpoints
Rather than hitting a breakpoint whenever

we reach a line of code, we can set a breakpoint
to trigger based on whether a particular
expression is true.

We can create a conditional breakpoint within
our script panel by creating a normal breakpoint,
right-clicking and selecting Edit, Condition... or
Add conditional breakpoint (depending on the
browser). This can be especially useful for
breakpoints set within loops. For instance, by

Pretty print Look for {} icon to un-minify JavaScript code

Tabular logging Use console.table to log arrays or objects

adding a conditional expression of i = 10, we’ll hit
the breakpoint only when this expression is true.

08 Debug minified code
Placing breakpoints on JavaScript makes

debugging much easier, but if your code has
already made it to production then it may have
already been minified. How can you debug
minified code? Helpfully, some of the browsers
have an option to un-minify your JavaScript.

In Chrome and Opera 15, simply select the
Sources tab, find the relevant script file and then
press the { } (Pretty Print) icon that’s located
within the bottom panel.

In IE, click the tool icon by the script selection
drop-down to find the option to format the
JavaScript. Older versions of Opera and Safari 6.1
will automatically un-minify your code.

Intermediate level
09 Use logging based on

expressions
We can use console.assert() to provide
conditional logging on our pages. Assert works

Frequent release cycles mean we receive new
versions of our browsers regularly, which means
we also receive frequent updates to our
developer tools.

O��Chrome developer tools have had the fullest
feature set for some time now. Each new
release tends to add more new and exciting
features such as workflows, snippets, canvas
inspection and source-mapping support.

O��Firebug was once the preferred choice for
browser tooling, but it has recently fallen
behind. Firebug updates are still frequent –
often every two or three weeks – but they
tend to be incremental changes rather than
the larger feature changes of other browsers.

O��Firefox has had its own developer toolbar for
some time now. As a late arrival on the scene,
it’s taken a while for Mozilla’s Firefox to catch
up with its competitors. However, significant
updates have been provided with each of the
new releases.

O��Internet Explorer developer tools have been at
risk of stagnation between recent releases,
with very little changing between IE9 and
IE10. However, the tools have been given an
overhaul for IE11 with a refreshed display and
many new features. (Also see ‘New IE11 dev
tools’ on page 38 for some more information
on new features).

O��Opera developer tools (known as Dragonfly)
have always been very competent at
debugging websites – but with the release
of Opera 15 and the move to Blink, these
tools are now identical to Chrome’s. It’s likely,
though, that Dragonfly will return in one form
or another in a later version.

O��Safari revamped its developer tools with the
release of Safari 6. But a combination of the UI
overhaul and the change of most options to
icons made it difficult for developers to
understand. The latest Safari 6.1 beta,
however, shows great strides are being made
to create a much clearer interface.

Current state of browser developer tools

by evaluating an expression, before logging a
console message if the evaluated expression is
false. If the expression is true on the other hand,
no message is logged.

For example:

 var i = 11;
 console.assert(i < 10, ‘Unexpected value for i: ‘ +
 i);
 // returns Assertion failed: Unexpected value for
 i: 11

At the time of writing, assert is supported in
all browser developer tools (including Firebug)
except Firefox Developer Tools.

10 List the properties of an object
Using console.dir(obj) produces a list of

properties available on an object. The properties
are interactive; they can be altered on the fly. This
feature is especially useful with DOM objects (for
example, document), as traditional console log
commands show the HTML output rather
than a list of object properties.

Catching up The dev tools in Firefox receive regular updates and are catching up to the tools in other browsers

<prev 38 .net october 2013

.net browser_dev_tools

11 Profile JavaScript from
the console

We can profile parts of our JavaScript to find
performance bottlenecks directly from the console
via two different approaches.

By using console.time, we can perform a quick
analysis of the time taken to run our code, while
console.profile provides a greater breakdown by
showing how long it took the individual functions
to run.

To use the timer, we need to provide a label as
a parameter to console.time. The label allows us
to run multiple timers concurrently:

 console.time('timer 1');

To end the timer, we provide the same label to
console.timeEnd:

 console.timeEnd('timer 1');

At this point, the console will log the number
of milliseconds the timer had been running for.

console.profile works in the same way, with a
corresponding console.profileEnd method.
However, the report produced after running it is
much more detailed. Depending on the browser
developer tool, the profile will either be logged
out to the console or, in the case of Chrome and
Opera 15, to the Profiles tab.

12 Log data in a table
If the data we are logging to the console is

a multidimensional array, or an object, we can use
console.table in Chrome, Firebug and Opera 15 to
output the data into a table we can sort.

To log a multidimensional array as a table:

 var five = [["Julian", 12], ["Dick", 11], ["Georgina",
 11], ["Anne", 10], ["Timmy", "Unknown"]];
 console.table(five);

Logging an object as a table works in the same
way, except that property names can be used for
column and row names. Alternatively, we can add
a second argument to specify which columns to
output. For example, see the following:

IE11, available for Windows 7 and 8.x, offers
a new set of developer tools.

Some of the new features in the transition
from IE10 to IE11 include:

New DOM Inspector/style features:
O��Improved highlighting of selected elements:

elements selected in the DOM Inspector now
have a blue overlay.

O��New breadcrumb navigation shows the DOM
path to the current element, allowing rapid
navigation up and down the path hierarchy.

O��You can now change the order of DOM
elements by dragging and dropping.

O��Trace is a new feature that provides a concise
summary list of all the properties applied from
your stylesheets.

O��The ability to filter computed styles.

O��A new Events panel that allows us to inspect
events attached to DOM elements.

New console features:
O��The window.console object is now defined

even when developer tools are closed.
O��Console can now be opened from any pane:

IE11 uses the keyboard shortcut Ctrl + '.
O��Support for $ as a shortcut for getElementById

and $$ as a shortcut for querySelector.
O��Objects within console can be inspected.
O��Support for console.count, console.group,

console.trace and console.time.

New scripting/debugging features:
O��The whole journey for debugging in IE has

been improved. The Start Debugging button
has been removed.

O��Hover over variables to see values.
O��Break on exceptions.
O��You can Set next statement to ensure your

debugger does not skip code wrapped in
library functions.

O��Run a script to see where the cursor is.
O��Open multiple scripts simultaneously.

New performance tool:
O��Called the UI Responsiveness Tool.
O��It has a Timeline mode, similar to Chrome’s.
O��Shows a graph for actual frames per second

(fps) against 60fps and 30fps.

New emulation features:
O��Emulate for responsive web design.
O��Emulate for Windows Phone.
O��Fake device location via geolocation.

New IE 11 dev tools

 var devtools = {"chrome": { "creator": "Google",
 "version": 28 }, "firefox": { "creator": "Mozilla",
 "version": 22 }, "internet-explorer": { "creator":
 "Microsoft", "version": 11,"plugins":"Silverlight"
 }};
 console.table(devtools, ['creator','version']);

If a property is missing from an object, the table
will display undefined for this table cell.

13 Run snippets of code
Sometimes when debugging we want to run

the same snippet of code continuously against
our page; at other times it would be handy to
include a saved snippet to help us debug our
code. We can run any JavaScript code from the
console already, but both Chrome, Opera 15 and
Firefox also enable us to save these snippets so
that we can use them again and again.

You can find Snippets in the Sources tab of
Chrome and Opera 15 dev tools, in the left-side
menu after Sources and Content Scripts. Here you
can create new snippets and run previously
created snippets, provided as a list accessible by

all your sites. In Firefox you’ll need to use
Scratchpad (https://blog.mozilla.org/
devtools/2011/08/15/introducing-scratchpad),
which allows us to load, save and run JavaScript
snippets by making use of the more traditional
file system method.

Find a list of useful snippets for tasks such as
adding jQuery to a page and listing all colours at
http://bgrins.github.io/devtools-snippets.

14 Emulate a touch device
Building a site for smartphones within a

browser can be difficult, especially if you have to
provide touch-specific functionality like swiping.

In Chrome and Opera 15, you can pretend to
be a device that supports touch and emulate
touch events directly within the browser. In order
to do this, open the Settings menu, select the
Overrides tab and then Emulate touch events.

In Chrome, this option will also replace the
cursor with a circle. You can then tell not only
which mode you are in, but also how large the
surface area for a touch click should be based on
Apple recommendations.

DevTools Snippets Brian Grinstead is maintaining a list of useful snippets to aid debugging (http://netm.ag/snippets-246)

 .net october 2013 39 next>

.net browser_dev_tools

15 Emulate a print stylesheet
While checking styles for print in the past,

we would have to rely on Print Preview or Print
to PDF. Recent versions of Chrome allow us to
emulate the media type so we can see how print
(or any of the other media types) looks directly
in our browser. To do this, open the Chrome
Developer Tools Settings menu and choose the

Overrides tab. At the bottom of the list of options
is Emulate CSS media. Select the checkbox and
choose Print.

16 What have I changed?
If you’ve made a number of changes to

your CSS or JavaScript within your developer
tools, it can be difficult to keep track of what
you’ve already changed. In the Sources tab of
Chrome and Opera 15 developer tools you can

find out what modifications have been made by
opening the Sources side panel, right-clicking
and selecting Local Modifications. A list of the
changed files will be displayed, together with
timestamps for when they were changed.

By expanding any one of these changes you
are given a before/after comparison. You can also
reverse any changes you are no longer happy

with. By right-clicking on the file, we can save
the new CSS or JavaScript file.

Advanced
17 Export network data

If you’ve ever had a situation where a
page works fine on your own machine, but on a
machine in another location an image is missing
or a piece of content does not load correctly, then
being able to view that machine’s network traffic

Emulation Chrome’s emulation tools include geolocation, touch, user agents and print

New tools IE11 offers a whole new suite of developer tools

can help us to debug the problem. In Chrome and
Opera 15, we can export the network timeline
by right-clicking within the Network tab and
selecting Save as HAR from the context menu.
HAR stands for HTTP Archive, a format for storing
network traffic from our site. You can duplicate
the effect in other browsers by running a network
monitoring program such as Fiddler (http://
fiddler2.com) or Charles (www.charlesproxy.com)
and exporting the HAR from there.

We can then attach this to a bug report and
load this HAR file on another machine by using a
HAR reader such as chromeHAR (http://ericduran.
github.io/chromeHAR).

18 Use Sass source maps
Preprocessors such as Sass (http://sass-lang.

com) are popular development aids, but the
output they generate can be difficult to work with
in the dev tools. For example, the line numbers in
your style panel won’t correspond to the ones in
your Sass file. Debugging gets much harder if you
use minification to remove unnecessary characters
(such as comments and newlines) and uglification
to optimise and shrink variable names.

Using source maps we can map our generated
CSS and JavaScript files back to the source, giving
us more control when debugging in developer
tools. Sass 3.3 and above come with full support
for source maps. First, check that you have version
Sass 3.3 or above running by entering:

 gem list sass

If the version is younger than 3.3.0.alpha, you
can run an install with:

 gem install sass --pre

Depending on how you compile your Sass files,
there are various ways to create .map files. Two of
the most popular are with the Sass watch
command and with Grunt.

If you’re using Sass watch, you need to add the
--sourcemap parameter to your command:

 sass --watch scss/common.scss:css/
 common.min.css --style
 compressed --sourcemap

 Pre-processors such as Sass are popular
 development aids, but the output they
 generate can be difficult to debug

Network traffic See another user’s network traffic for your site with Chrome HAR

<prev 40 .net october 2013

.net browser_dev_tools

If you’re using the Grunt grunt-contrib-sass
module, specifying the option sourcemap:

true will compile source maps during build.
In Chrome, you need to enable the

Experiments tab. If you haven’t done so already,
navigate to chrome://flags and choose Enable
Developer Tools experiments. You’ll need to press
the Relaunch Now button at the bottom of the
page to apply your changes.

Now go to the Settings panel of the developer
tools, click the General tab and activate Enable
source maps. Click the Experiments tab and check
Support For Sass.

After restarting your browser, you will now be
able to view line numbers of the Sass files directly.

19 Use JavaScript source maps
Like Sass source maps, the JavaScript

equivalent provides a map back to the original
formatted source. We can create a JavaScript
source map using various different tools such as
Google’s Closure Compiler (https://developers.
google.com/closure/compiler) or Grunt’s Uglify
(https://github.com/gruntjs/grunt-contrib-uglify)
plug-in that builds .map files for you. RequireJS
also has experimental support for source maps
(http://requirejs.org/docs/optimization.
html#sourcemaps).

When using Closure Compiler, we need to run
the following :

 java -jar compiler.jar --js common.js --create_
 source_map ./common.js.map --source_map_
 format=V3 --js_output_file common.min.js

With Closure Compiler, we also need to add a
sourceMappingURL with the name for a map file
to the bottom of our JS minified file:

 //# sourceMappingURL=common.js.map

The sourceMappingURL property is currently
going through a syntax transition due to a
problem found with compatibility in IE. So while
the most up-to-date syntax is //#, some older
browser versions may still expect //@. In Grunt,
we specify our source map in the options for

grunt-contrib-uglify as sourceMap: // path to map
file. In Chrome Developer Tools go to the Settings
menu and within the General tab activate Enable
source maps. Now when you debug your
JavaScript, you can use the un-minified version to
see what’s really going on, while still providing
your minified version to your end users.

20 Try Chrome’s Workspace
Chrome has recently introduced Workspace,

a highly requested feature that allows you to
make changes from the developer tools and
automatically update your source files.

To enable Workspace, you’ll first need to go to
chrome://flags and Enable Developer Tools
experiments. After re-launching Chrome, go to
the developer tools Settings menu and select the
Experiments tab. Check the box File system
folders in Sources Panel before closing and
reopening Chrome again.

Back in the Settings menu select the
Workspace tab. Select Add File System and add
the directory where your files are loaded, giving
Chrome permission to access the directory.

Now, go to the Sources menu and right-click
on one of your CSS or JavaScript files. Select Map
to Network Resource and from the file list that
appears and choose the file that matches your
selection. You can now make changes to your CSS
and JavaScript from within the developer tools
and your files will automatically update.

Keeping updated
Finally, by using the latest browser developer
versions, you can use current features and offer
feedback on how to make these tools better.
Following the links below to ensure you download
the latest versions.

O�Chrome Canary: http://netm.ag/canary-246
O�Firebug Beta: http://netm.ag/bug-246
O�Firefox Aurora: http://netm.ag/aurora-246
O�IE Platform Preview: http://netm.ag/win-246
O�Opera Next: http://netm.ag/opera-246
O�Webkit Nightly: http://nightly.webkit.org

Happy debugging! O

There are many more secrets available on the
website that accompanies this article,
including ways to debug sites on your mobile
device. Visit http://devtoolsecrets.com for
more information.

The site is hosted on GitHub, so if you
know a secret that isn’t listed, please submit a
pull request.

Official documentation
From Chrome to Safari and IE, each browser
provides some documentation for its
developer tools:

O��Chrome: http://netm.ag/ctools-233
O��Firebug: http://getfirebug.com/wiki
O��Firefox: http://netm.ag/fftools-233
O��Internet Explorer: http://netm.ag/f12-246
O��Opera: http://netm.ag/dragon-246
O��Safari: http://netm.ag/safari-246

Keyboard shortcuts
A really useful resource to have to hand:
O��List of keyboard shortcuts:

http://netm.ag/shortcuts-246

Older IE support
Unfortunately, older versions of IE do not ship
with developer tools, but there are several
other options:

O��IE Developer Toolbar:
http://netm.ag/toolbar-246

O��Firebug Lite: http://netm.ag/firebug-246
O��Companion.JS: http://netm.ag/comp-246

Extensions
If you want even more functionality from your
developer tools, both Chrome and Firebug
support extensions. See the following for
some popular ones:

Chrome
O��PageSpeed Insights:

http://netm.ag/insights-246
O��CoffeeConsole:

http://netm.ag/coffee-246
O��Tincr (live edit and save to source):

http://netm.ag/tincr-246
O��AngularJS Batarang:

http://netm.ag/angularjsbatarang-246
O��Backbone Developer Tools: https://github.

com/spect88/backbone-devtools
O��Ember Extension: https://github.com/

tildeio/ember-extension
O��Knockoutjs context debugger:

http://netm.ag/contextdebugger-246
O��Grunt Devtools: http://netm.ag/grunt-246

Firebug
O��FireSass: https://addons.mozilla.org/en-US/

firefox/addon/103988/
O��Pixel Perfect: https://addons.mozilla.org/

en-US/firefox/addon/7943
O��YSlow: https://addons.mozilla.org/en-US/

firefox/addon/5369

Further reading

Grunt work Modules for Grunt such as grunt-contrib-sass and grunt-contrib-uglify can create source maps for you

	page-000
	page-001
	page-002
	page-003
	page-004
	page-005
	page-006
	page-007
	page-008
	page-009
	page-010
	page-011
	page-012
	page-013
	page-014
	page-015
	page-016
	page-017
	page-018
	page-019
	page-020
	page-021
	page-022
	page-023
	page-024
	page-025
	page-026
	page-027
	page-028
	page-029
	page-030
	page-031
	page-032
	page-033
	page-034
	page-035
	page-036
	page-037
	page-038
	page-039
	page-040
	page-041
	page-042
	page-043
	page-044
	page-045
	page-046
	page-047
	page-048
	page-049
	page-050
	page-051
	page-052
	page-053
	page-054
	page-055
	page-056
	page-057
	page-058
	page-059
	page-060
	page-061
	page-062
	page-063
	page-064
	page-065
	page-066
	page-067
	page-068
	page-069
	page-070
	page-071
	page-072
	page-073
	page-074
	page-075
	page-076
	page-077
	page-078
	page-079
	page-080
	page-081
	page-082
	page-083
	page-084
	page-085
	page-086
	page-087
	page-088
	page-089
	page-090
	page-091
	page-092
	page-093
	page-094
	page-095
	page-096
	page-097
	page-098
	page-099
	page-100
	page-101
	page-102
	page-103
	page-104
	page-105
	page-106
	page-107
	page-108
	page-109
	page-110
	page-111
	page-112
	page-113
	page-114
	page-115
	page-116
	page-117
	page-118
	page-119
	page-120
	page-121
	page-122
	page-123
	page-124
	page-125
	page-126
	page-127
	page-128
	page-129
	page-130
	page-131

